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Design the Controller

• “Design Field-Oriented Control Algorithm” on page 1-2
• “Design Current and Position Scaling Subsystems” on page 1-3
• “Design Current Controller Subsystem” on page 1-6
• “Perform Manual Gain-Tuning of Current Controller” on page 1-10
• “Design Speed Control Algorithm” on page 1-13
• “Perform Manual Gain-Tuning of Speed Controller” on page 1-16
• “Code Verification and Profiling Using PIL Testing” on page 1-17
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Design Field-Oriented Control Algorithm
To implement the speed control algorithm for a motor, perform these tasks:

• Current scaling — Convert current from ADC counts to PU
• Quadrature encoder position decoding — Read the quadrature encoder position counts and

calculate the rotor electrical position
• Torque control — Current control in d-q axis
• Speed control

These steps help you implement the speed control algorithm for a PMSM using Motor Control
Blockset and are related to the model mcb_pmsm_foc_qep_f28379d used in the example “Field-
Oriented Control of PMSM Using Quadrature Encoder”. They explain the steps to tune the control
parameters for d-axis and q-axis current controllers and the speed controller.

1 “Design Current and Position Scaling Subsystems” on page 1-3
2 “Design Current Controller Subsystem” on page 1-6
3 “Perform Manual Gain-Tuning of Current Controller” on page 1-10
4 “Design Speed Control Algorithm” on page 1-13
5 “Perform Manual Gain-Tuning of Speed Controller” on page 1-16

In these steps, variables are used to define datatypes and execution times of the current and speed
controllers. See the initialization script linked to the example model mcb_pmsm_foc_qep_f28379d
for details on the variables defined in these steps.

Tip A basic understanding of Simulink® is a prerequisite for following this workflow as these
workflow steps do not provide details on tasks like defining a datatype in a constant block or using
math operations blocks in Simulink.

See “Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool” for
estimating the motor parameters. Then, see “Creating Plant Model Using Motor Control Blockset” on
page 3-2 to design a plant model. This helps you verify the control algorithm in simulation.
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Design Current and Position Scaling Subsystems
Use these steps to design the current and position scaling subsystems:

1 Create the current scaling subsystem.

This subsystem reads the current in ADC counts and converts it to per-unit (PU) values.

In this subsystem, the IaOffset and IbOffset Data Store Memory blocks are the ADC offsets for
current measurement and they are hardware specific. The file
mcb_SetInverterParameters.m contains the default ADC offset (CtSensAOffset and
CtSensBOffset) for few commercially available inverters. For details about ADC offset calibration
in hardware, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset”.

In this subsystem, the motor phase current measured in ADC counts is converted to current in
PU. The PU_System.I_base value refers to the base current in this subsystem. For details about
the PU system, see “Per-Unit System”. See the mcb_SetPUSystem.m file that computes the PU
values for the system.

You can use the base values for computing the real-world values from per-unit. To implement the
real-world or SI unit values, see the model mcb_pmsm_foc_qep_f28379d_SIUnit used in the
example “Field Oriented Control of PMSM Using SI Units”.

The IaOffset and IbOffset Data Store Memory blocks are used to share data between the current
and position subsystems.

2 Create the position scaling subsystem.

 Design Current and Position Scaling Subsystems
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This subsystem reads the rotor position from the QEP pulse count.

In this subsystem, the Quadrature Decoder block reads the position count from the plant model
or hardware driver block. The block converts the rotor mechanical position in encoder position
counts to rotor mechanical angle in PU (0-1).

The Mechanical to Electrical Position (Mech2Elec Position) block adjusts the mechanical angle
for QEP offset and converts it to electrical angle. This rotor electrical angle is required for the
FOC algorithm to spin the motor. Refer to “Quadrature Encoder Offset Calibration for PMSM
Motor” for calculating the QEP encoder offset.

The Speed Measurement block calculates speed from the rotor position. In the Speed
Measurement block parameters dialog box, set the Delays for speed calculation (number of
samples) parameter to 20. We selected the value 20 in this workflow so that the block can
measure the maximum speed of the motor that is under test. The Speed Measurement block
outputs the speed in PU.

These subsystems that you create includes the current scaling and position decoding logic.

1 Design the Controller
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Design Current Controller Subsystem
Use these steps to design the current controller subsystem:

1 From the Motor Control Blockset library in the Simulink Library Browser, use the Discrete PI
Controller with anti-windup & reset block (in the Controls/Controllers library) to design the d-
axis and q-axis current control.

The MATLAB function mcb.internal.SetControllerParameters (in the model initialization
script) calculates the PI control gains for the d-axis and q-axis current controller and speed
controller. For details regarding the control parameter gain estimation, see “Estimate Control
Gains from Motor Parameters”. See the model initialization script file
mcb_pmsm_foc_qep_f28379d_data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) for the sampling time (Ts) of 50μs.

In the subsystem diagram, the Enable variable is a Data Store Memory used to reset the
controller. Adding Enable variable is optional.

The subsystem also uses three constant blocks with these values:

• PI_params.Kp_i
• PI_params.Ki_i*Ts
• 0

Create a similar subsystem for the q-axis PI controller. Integrate the subsystems for d-axis and q-
axis PI controllers into a single subsystem (Current_Controllers) that controls the d-axis and q-
axis currents.

2 Add the Clarke Transform, Park Transform, Inverse Park Transform, and Space Vector Generator
blocks from the Motor Control Blockset/Controls/Math Transforms library to the
Current_controllers subsystem (that you created in step 1) as shown in this figure.

1 Design the Controller
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3 Integrate the components that you created in step 2 into a single subsystem (Closed Loop
Control that implements closed loop field-oriented control) as shown in this figure.

4 Create an Output scaling subsystem to scale the Pulse Width Modulation (PWM) outputs. This
subsystem outputs the normalized PWM duty cycles (0-1) for the plant model.

5 Create a new subsystem by integrating the current scaling, QEP position decoding, Closed Loop
Control, and Output scaling subsystems. Add the trigger block from the Simulink/Ports &
Subsystems library to this subsystem and set the Trigger type parameter to function-call.

 Design Current Controller Subsystem
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6 Add a Function-Call Generator block from the Simulink/Ports & Subsystems library to the
subsystem created in step 5. Set the Sample time parameter of the block to equal the control-
loop sample time, Ts (that has a default value of 50e-6 s).

7 Integrate the plant model and the controller subsystem that you created in step 6. For detailed
steps on how to create a plant model for a motor control system, see “Creating Plant Model
Using Motor Control Blockset” on page 3-2.

1 Design the Controller
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Perform Manual Gain-Tuning of Current Controller
In this step, you perform gain tuning for the d-axis and q-axis current controller manually.

This step is optional, but helps you to tune the control gain parameters for the current controller.
Provide step change for Id_ref and analyze the current controller performance from the step
response of Id_meas. Repeat the same process for Iq_ref to tune the q-axis current controller. In
the plant model, lock the rotor to ensure that the motor does not spin when you provide a step
change for Id_ref or Iq_ref. In the Surface Mount PMSM block parameters dialog box, set the
Mechanical input configuration parameter to Speed. Provide the Spd input (of the Surface Mount
PMSM block) as 0 to ensure that the rotor is locked.

The integrated plant and controller subsystem simulation model allows you to manually tune the
gains of the current controller. Provide a step input to Iq_ref in the range (0 to 0.2) PU and observe
the measured feedback. Adjust the control parameters of the current controller to meet your control
objectives.

1 Design the Controller
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Simulate the model and plot the Iq_ref_PU and Iq_meas_PU and analyze the step response. This
allows you to tune the control parameters for the q-axis controller to meet the control objectives.

 Perform Manual Gain-Tuning of Current Controller
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You can follow the same method for tuning the d-axis current controller. In the Surface Mount PMSM
block parameters dialog box, set the Mechanical input configuration parameter to Torque.

1 Design the Controller
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Design Speed Control Algorithm
To design a speed control algorithm:

1 Create a speed controller subsystem. The Iq_ref current output of the speed controller
subsystem is used as an input to the current controller subsystem that you created earlier.

To create a speed controller subsystem, from the Simulink Library Browser, select the Discrete PI
Controller with anti-windup & reset block from the Motor Control Blockset/Controls/
Controllers library.

The MATLAB® function mcb.internal.SetControllerParameters (in the model
initialization script) calculates the PI control gains for the d-axis and q-axis current controller and
speed controller. For details regarding the control parameter gain estimation, see “Estimate
Control Gains from Motor Parameters”. See the model initialization script file
mcb_pmsm_foc_qep_f28379d_data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) for the sampling time (Ts_speed) of 500μs. Use Enable Data-Store
Memory block to reset the controller but this is optional.

2 Create a subsystem for the speed controller and add a Rate Transition block ( from the
Simulink/Signal Attributes library) to the inputs with the sample time as Ts_speed
(execution time of the speed control loop).

 Design Speed Control Algorithm
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3 Integrate the Speed Controller subsystem with the integrated Current Controller and plant
model subsystems. Connect the Iq_ref_PU output port of the Speed Controller subsystem to the
Current Controller subsystem input port through a Rate Transition block as both ports execute in
different sample rates. This figure shows an example of settings of the Rate Transition block
connected to the Speed Controller and Current Controller subsystems.

1 Design the Controller
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This figure shows the integrated Speed Controller, Current Controller, and plant model
subsystems.
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Perform Manual Gain-Tuning of Speed Controller
To manually tune the Speed Controller subsystem, add a step input (in the range 0.2 to 0.5 PU) to
the Speed_ref_PU input in Speed Controller subsystem. Monitor the speed step response and tune
the Speed Controller subsystem parameters. This figure shows the step response of the speed
controller.

The preceding procedure provides an approach to implement speed control for a PMSM motor in
simulation. Run the simulation and analyze the controller performance.

You can generate the C code from this control algorithm using Embedded Coder®. You can deploy this
code and the hardware drivers to the target hardware.

1 Design the Controller
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Code Verification and Profiling Using PIL Testing
In processor-in-the-loop (PIL) simulation, the control algorithm executes in the target hardware, but
the plant model runs on the host machine. The plant model simulates the input and output signals for
the controller and communicates with the controller by using the serial communication interface.
This functionality allows you to use PIL simulation to determine the execution time on the target
hardware, which you can then compare with the execution time for simulating the model on the host
machine.

The execution time, or the performance metric of an algorithm that you obtain from PIL simulation,
helps you detect algorithm overrun on the target hardware. The PIL profiling report shows the
average and maximum execution times of an algorithm on the target hardware. This example explains
PIL profiling on Texas Instruments™ LAUNCHXL-F28379D hardware board.

This example uses the mcb_pmsm_foc_sim.slx model to show code verification in PIL simulation.
This example shows PIL profiling for the Current Control subsystem in the model. This subsystem
includes the Field-Oriented Control (FOC), current scaling (per-unit conversion), speed measurement,
and rotor position scaling (computation of angle from the encoder position counts) algorithms. The
PIL profiling report shows the average and maximum execution times of the control algorithm in the
target hardware.

This example consists of these tasks:

• Verify code execution by using PIL testing by comparing the algorithm in the simulation and target
hardware operating modes.

• Perform PIL profiling by measuring the algorithm execution time in the target hardware and
generate the PIL profiling report.

Required MathWorks Products
• Embedded Coder
• Embedded Coder Support Package for Texas Instruments C2000™ Processors

Supported Hardware
• LAUNCHXL-F28379D controller hardware board

Prepare PIL Model
1 Open the mcb_pmsm_foc_sim.slx model.

open_system('mcb_pmsm_foc_sim.slx');

 Code Verification and Profiling Using PIL Testing
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This model simulates the PMSM motor and the FOC algorithm for closed-loop speed control.
2 On the Hardware tab of the Simulink toolstrip, click Hardware Settings.
3 In the Configuration Parameters dialog box, under Hardware Implementation, set the

Hardware board field to TI Delfino F28379D LaunchPad.

1 Design the Controller
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Verify Code by Using PIL
1 In the Configuration Parameters dialog box, select these configuration settings under Hardware

Implementation > Hardware board settings > Target hardware resources > PIL:

a Communication Interface — Select serial.
b SCI module — Select SCI_A.
c Serial port in MATLAB preferences — The model automatically detects the

communication port to which you have connected the hardware. This parameter remains
unchanged for the rest of the currently active MATLAB session. Click the Refresh button to
detect the communication port again.

 Code Verification and Profiling Using PIL Testing
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2 Open the mcb_PIL_config_TI.m script file to set the configuration parameters.

edit('mcb_PIL_config_TI.m');
3 Update the model name and stop time in the script.

4 Run the script to update the configuration parameters of the simulation model and the PIL
preferences.

1 Design the Controller
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5 Right-click the Current Control subsystem in the mcb_pmsm_foc_sim.slx example model.
Under the C/C++ Code menu, select Deploy this Subsystem to Hardware.

The system displays the Build code for Subsystem dialog box. Set the Storage Class to
Inlined for all parameters.
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6 Click Build to create a model named untitiled that includes a PIL subsystem called Current
Control.

1 Design the Controller
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7 Rename the Current Control subsystem to Current Control (PIL).
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8 Copy the Current Control (PIL) subsystem and replace the Current Control subsystem in the
mcb_pmsm_foc_sim.slx example model.
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In the PIL mode, the system deploys the Current Control (PIL) subsystem to the target and
executes the subsystem in the target hardware.

9 To compare the algorithm execution on the host machine simulation and in the PIL simulation,
connect the Current Control subsystem parallely to the Current Control (PIL) subsystem. In
addition, enable signal logging in the subsystem outputs.

10 On the Simulink toolstrip, select the SIL/PIL Manager app from the Apps tab.

11 On the SIL/PIL toolstrip, select SIL/PIL Sim Only.

12 Select Model blocks in SIL/PIL mode in the System Under Test field.

 Code Verification and Profiling Using PIL Testing
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13 Click Run SIL/PIL on the SIL/PIL toolstrip to build the Current Control (PIL) subsystem and
deploy it to the target.

After the system deploys the subsystem, the Current Control (PIL) subsystem executes on the
target hardware processor, while the plant model runs on the host machine.

Analyze PIL Profiling Results
When PIL simulation ends, the system generates a profiling report.

Note PIL simulation takes more time than the host-machine-based simulation. This is because of the
serial communication (related to inputs and outputs of the Current Control (PIL) subsystem) between
the host machine and subsystem that runs on the target hardware.

1 Design the Controller
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This profiling report, which is for the fixed-point datatype, shows the maximum and average
execution times of the Current Control (PIL) subsystem running on the target hardware.

You can use the Data Inspector button on the Simulation tab to compare the signals logged during
host-machine-based simulation and PIL simulation (executed on the target). This helps you verify the
accuracy of host-machine-based simulation and PIL simulation.

This plot compares the speed feedback signals from the Current Control (PIL) and Current Control
subsystems.

 Code Verification and Profiling Using PIL Testing
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If the execution time exceeds 60% of the budgeted time, you can optimize the algorithm using one of
these techniques:

• Execute from RAM.
• Offload some functionalities to CLA or other CPUs.
• Scale the algorithm to run at every alternate cycle.
• Move less critical functionalities like speed calculation to a slower rate.

For more details on SIL/PIL code verification, see:

• Code Verification and Validation with PIL
• Code Execution Profiling with SIL and PIL
• SIL/PIL Manager Verification Workflow

1 Design the Controller
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Deploy and Validate System

• “Prepare Target Hardware” on page 2-2
• “Add Hardware Drivers to Simulation Model and Deploy to Target Hardware” on page 2-4
• “Task Scheduling in Target Hardware” on page 2-6
• “Adding ADC Driver Library Block” on page 2-8
• “Adding Quadrature Encoder Driver Block” on page 2-10
• “Add PWM Driver Block” on page 2-12
• “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-15
• “Run in Open-Loop and Switch to Closed-Loop” on page 2-17
• “Model Configuration and Hardware Deployment” on page 2-20
• “Validate System” on page 2-22
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Prepare Target Hardware
Follow these steps to prepare the target hardware before you deploy the control algorithm developed
using Motor Control Blockset to it.

Verify Direction of Rotation of Motor
The phase sequence of the motor connection in the target hardware determines the direction of
rotation of the motor. The Motor Control Blockset example models consider the direction of rotation
during the position ramp-up as a positive direction and the corresponding measured speed as
positive. It is recommended that you run the motor in open-loop control with a position ramp from 0
to 1 and ensure that the position feedback is positive. The example models in Motor Control Blockset
use this convention for the motor's direction of rotation.

For the supported hardware, the algorithm in the example “Quadrature Encoder Offset Calibration
for PMSM Motor”, runs the motor and finds the offset between the d-axis of the rotor and the encoder
index pulse (when the rotor is aligned to the d-axis of the stator). The red LED in the host model for
this example turns on when the direction is opposite. When this happens, you should change the
phase sequence of the motor wiring (swap any two motor wires).

See the example “Hall Offset Calibration for PMSM Motor” to identify the direction of rotation of a
motor that uses Hall sensors.

Note When using a Hall sensor, ensure that the Hall sequence updated in the Hall Speed and
Position and Hall Validity blocks matches the sequence of the actual Hall signals. If you update an
incorrect Hall sequence, the direction read by the target hardware is the opposite of the actual
direction.

Calibrate Current Sensor
Signal conditioning circuits for the current sensor introduces an offset voltage in the ADC input when
measuring both positive and negative current. For example, an ADC with a voltage reference of 3.3 V
can have an offset of 1.65 V (when using Texas Instruments BOOSTXL-DRV8305 hardware). This
offset value varies due to tolerances of the passive components in the signal conditioning circuit. It is
recommended that you measure the ADC offset of the board during initialization.

In the hardware initialization block used in most Motor Control Blockset example models, the system
computes the average current sensor ADC values and uses them as ADC offset values for measuring
the current. ADC offset values are represented in ADC counts.

See the example “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” to
manually calibrate the ADC offset and update the offset in the script file.

See the Hardware Init subsystem in the example “Field-Oriented Control of PMSM Using Quadrature
Encoder” to calculate the ADC offset before starting closed-loop control.

Calibrate Position Sensor
For PMSM, the position used in the current control algorithm should align with the d-axis position of
the rotor. By default, the quadrature encoder position sensor reads the mechanical position of the
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rotor with reference to its index pulse. The position offset is the position read by the quadrature
encoder when d-axis of the rotor is aligned to phase A. To obtain the accurate motor position, correct
the position read by the quadrature encoder by using this offset value. Then provide the corrected
motor position value as an input to the current control algorithm.

Any delay between the actual rotor position and the position provided to the current controller affects
the motor functionality and performance.

For more details, see the examples “Quadrature Encoder Offset Calibration for PMSM Motor” and
“Hall Offset Calibration for PMSM Motor”.
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Add Hardware Drivers to Simulation Model and Deploy to
Target Hardware

This topic explains the steps to add hardware drivers to a simulation model and deploy the model to
the target hardware.

This topic uses the model mcb_pmsm_foc_sim as a reference to explain the steps involved in the
hardware deployment. The model mcb_pmsm_foc_sim simulates the field-oriented control (FOC)
algorithm for implementing speed control for a PMSM.

The speed control algorithm is deployed to the target hardware Texas Instruments LAUNCHXL-
F28379D (connected to Texas Instruments BOOSTXL-DRV8305). These are the hardware interface
details:

Interface Pin on LAUNCHXL-F28379D
Phase-A input of the motor ADCINC2
Phase-B input of the motor ADCINB2
PWM A output from the motor EPWM1A
PWM B output from the motor EPWM2A
PWM C output from the motor EPWM3A
Enable Driver BOOSTXL-DRV8305 GPIO124

These steps explain how to add the hardware driver blocks from the Embedded Coder Support
Package for Texas Instruments C2000 Processors so as to deploy the control algorithm to the target
hardware LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305).

1 “Task Scheduling in Target Hardware” on page 2-6
2 “Adding ADC Driver Library Block” on page 2-8
3 “Adding Quadrature Encoder Driver Block” on page 2-10
4 “Add PWM Driver Block” on page 2-12
5 “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-15
6 “Run in Open-Loop and Switch to Closed-Loop” on page 2-17
7 “Model Configuration and Hardware Deployment” on page 2-20

These steps use variables to define the datatypes, the execution time of the current controller, and
the execution time of the speed controller. See the model initialization script of the example model
mcb_pmsm_foc_sim for details on the variables defined in these steps.

To understand the prerequisites needed to deploy the control algorithm to any target hardware, see
“Prepare Target Hardware” on page 2-2. For details related to the hardware connections, see
“Hardware Connections”.

To implement a simulation model with a PMSM motor FOC control algorithm, see “Design Field-
Oriented Control Algorithm” on page 1-2.

A basic understanding of Simulink is a prerequisite to follow these steps. For details about the ADC
driver, the quadrature encoder driver, and the hardware interrupt block, see the example model
mcb_pmsm_foc_qep_f28379d, which uses an architecture similar to what we describe.
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Note For target hardware other than LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305), you
can follow these steps, but select the driver blocks (ADC, PWM, Interrupt) from the appropriate
supported hardware library.
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Task Scheduling in Target Hardware
In the example model mcb_pmsm_foc_sim, configuring the current controller and the speed
controller are the two important tasks. The current controller is scheduled to run after every Ts (50
µsec for a 20 kHz switching frequency) and the speed controller runs after every Ts_speed (10*Ts). The
current controller reads the motor phase currents and position and computes the PWM duty cycle to
run the motor. The speed controller runs the control loop, calculates Iq reference for the current
controller, and controls the motor speed in the closed-loop.

In the target hardware, the current controller is synchronized with the ADC interrupt (for every Ts)
and the speed controller is triggered after every Ts_speed (10*Ts).

This figure shows the event sequence, interrupt trigger, and software execution time for the control
algorithm running in the target hardware.

In this figure, the execution times for the current controller and speed controller are not in scale. See
the processor datasheet to better understand the functionality of the processor peripherals such as
the ADC (analog-to-digital converter) and the PWM (pulse-width modulation).

The event sequence followed in the model is:

1 The processor peripheral PWM, which is center-aligned (Up-Down Counter), triggers the start-of-
conversion (SOC) event for the ADC module when the PWM counter value equals the PWM
period.

2 The ADC module converts the sampled analog signal into digital counts and triggers the end-of-
conversion (EOC) event.

3 The EOC triggers the ADC interrupt.
4 The current controller is scheduled to execute with the ADC interrupt.
5 The speed controller is scheduled to run after every Ts_speed.
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You can also use SoC Blockset™ for task scheduling, profiling, and addressing challenges related to
ADC-PWM synchronization, controller response, and studying different PWM settings. For details, see
“Integrate MCU Scheduling and Peripherals in Motor Control Application”.
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Adding ADC Driver Library Block
In the example model mcb_pmsm_foc_sim, the current controller block receives the motor phase
current in ADC counts from the plant model that converts the motor phase current from Amperes to
ADC counts. In the target hardware, the current controller reads the motor phase current from the
ADC block. Follow this workflow to add the ADC driver block.

In the Texas Instruments BOOSTXL-DRV8305 inverter hardware, the phase-A current of the motor is
read from ADC C2 channel and phase-B current is read from ADC B2 channel. Select ADC module C
and channel 2 to obtain the phase-A current of the motor. Select ADC module B and channel 2 to
obtain the phase-B current of the motor. For other target hardware, select the ADC module and
channel where the motor phase currents are interfaced.

Select ePWM1_ADCSOCA as the trigger source in the ADC block because the PWM library block
triggers the start-of-conversion event SOC0 when the PWM counter equals the PWM period register.

Select ADCINT1 in the ADC B module. This triggers an ADC interrupt at the end-of-conversion (EOC)
event. When the ADC interrupt occurs, the FOC current control algorithm executes.

In the Simulink library browser, select and add the ADC block from the F2837xD library in Embedded
Coder Support Package for Texas Instruments C2000 Processors. Configure the ADC block to read
the phase-A and phase-B currents of the motor.

In the ADC block parameters dialog box, configure the ADC C module and Channel 2 to read the
phase-A current of the motor, as shown in this table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module C
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
Input Channels > Conversion channel ADCIN2

Rename the block as ADC_C_IN2.

In ADC block parameters dialog box, configure the ADC B module and channel 2 (to read Motor
Phase-B current) and the ADC interrupt (ADCINT1), as shown in this table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module B
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
SOC Trigger > Post interrupt at AOC trigger on
SOC Trigger > Interrupt selection ADCINT1
SOC Trigger > ADCINT1 continuous mode on
Input Channels > Conversion channel ADCIN2

Rename the block as ADC_B_IN2.
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Adding Quadrature Encoder Driver Block
In the Simulink Library Browser, add the eQEP block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

The eQEP block reads the quadrature encoder pulses and increments the position count. This block
outputs the quadrature encoder pulse for the mechanical rotor position wraparound when the
quadrature encoder index pulse is read.

See the section Quadrature Encoder Interface Configuration in “Model Configuration Parameters” for
configurations related to the quadrature encoder.

In c28x eQEP block parameters dialog box, configure the quadrature encoder to read the quadrature
encoder pulse count in the TI processor and wrap the pulse counter output when index pulse is found
as shown in this table.

Tab and Parameter in eQEP Block Settings
General > Module eQEP1
General > Sample time -1
Position counter > Output position counter on
Position counter > Maximum position
counter value (0~4294967295)

2^16-1

Position counter > Position counter reset
mode

Reset on the first index event

Position counter > Output latch position
counter on index event

on

Position counter > Index event latch of
position counter

Falling edge

Rename the block as eQEP.

eQEP1 module is selected because the quadrature encoder is connected to the QEP_A interface in the
LaunchPadXL28379d hardware board. Select the sample time as -1 because the library block is
function-call triggered by the ADC interrupt synchronously. The maximum position counter value is
2^16-1 because the position counter uses a 16-bit architecture in the library driver block. The
position counter reset mode on the index pulse wraps the position count on the index pulse.

Add the eQEP driver block module to the mcb_pmsm_foc_sim/Current control subsystem as
shown in this figure.
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Add PWM Driver Block
In the Simulink Library Browser, add the ePWM block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

Configure the ePWM1, ePWM2, and ePWM3 blocks for generating the PWM pulse. In the ePWM
block parameters dialog box, calculate the pulse width modulation (PWM) counter period register
value from the CPU frequency and the PWM frequency. For center-aligned PWM, divide the value by
2.

PWM counter period = CPU clock frequency / PWM frequency / 2

See the TMS320f28379d processor ePWM peripheral for more details.

In the F2837x/07x/004x/38x ePWM block parameters dialog box, update the settings to configure
PWM1 to generate PWM pulses in the target hardware as shown in this table.

Tab and Parameter in ePWM Block Settings
General > Module ePWM1
General > Timer Period Enter the PWM period value in the CPU clock

cycle

• PWM counter period = CPU clock frequency /
PWM frequency / 2

• For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/ 2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/ 2 (2500)
Deadband unit > Use deadband for ePWM1A on
Deadband unit > Use deadband for ePWM1B on
Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Event Trigger > Enable ADC start of
conversion for module A check box (only for
PWM1)

on

Event Trigger > Start of conversion for
module A event selection (only for PWM1)

Counter equals to period (CTR=PRD)

Rename the block as ePWM1.
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In the F2837x/07x/004x/38x ePWM block paramters dialog box, update the settings to configure
PWM2 and PWM3 to generate PWM pulses in the target hardware. PWM2 and PWM3 are
synchronized with PWM1. Follow ePWM1 configurations (other than Event Trigger) and add the
configurations as shown in this table.

Tab and Parameter in ePWM Block Settings
General > Module ePWM2
General > Timer Period Enter the PWM period value in the CPU clock

cycle

• PWM counter period = CPU clock frequency /
PWM frequency / 2

• For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
General > Synchronization action Set counter to phase value specified via

dialog
General > Counting direction after phase
synchronization

Count up after sync

General > Phase offset value (TBPHS) 0
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/ 2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/ 2 (2500)
Deadband unit > Use deadband for ePWM1A on
Deadband unit > Use deadband for ePWM1B on
Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Rename the blocks as ePWM2 and ePWM3.

Select CMPA and CMPB as input ports where PWM duty is given as input. The range varies from 0 to
PWM_counter_period. PWM outputs when PWM up-counter matches CMPA and PWM down-counter
matches CMPB. By default, the system inputs a duty cycle of 50% by selecting PWM counter period /
2.

Enable dead time in the ePWM configuration. On the Event Trigger tab of PWM1 module, select ADC
start of conversion event when the PWM counter equals the PWM period. In the SOC Trigger tab of
the ADC block, select SOCx trigger source as ePWM1_ADCSOCA.

Synchronize the ePWM2 and ePWM3 blocks with the ePWM1 block by setting the synchronization
timing to the moment when the PWM counter equals to zero in the ePWM2 and ePWM3 blocks.
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The ePWM blocks expect the duty cycle value to range from 0 to period counter register (5000).
Control_System subsystem outputs the PWM in the range -1 to 1. This model scales the output to 0
to 5000 (period counter value).

For simulation, add a variant source/sink to the hardware driver block for simulation and code
generation.
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Add Hardware Interrupt Trigger Block for Current Control Loop
In the Simulink Library Browser, select and add the C28x Hardware Interrupt block from Embedded
Coder Support Package for Texas Instruments C2000 Processors > Scheduling.

In the block parameters dialog box, update the settings to configure the hardware interrupt
ADCINT1. In the block parameters dialog box, identify and update the PIE and CPU interrupts for the
hardware interrupt ADCINT1.

Parameter in C28x Hardware Interrupt Block Settings
CPU interrupt numbers [1]
PIE interrupt numbers [2]

In the current control subsystem, add a Trigger block and set the Trigger type parameter to
function-call. Connect this subsystem trigger input to the Hardware Interrupt block as shown in
this figure.

In the Rate Transition block input to Current Control subsystem, change the Output port sample
time to -1.

Add a Function-Call Generator block in variant source to support the model simulation. In the
Function-Call Generator block, set the Sample time parameter as Ts (50e-6).
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Simulate the model with the updated driver blocks and check the simulation results in the simulation
Data Inspector. Variants ensure that ADC, PWM drivers, and interrupts are not active for simulation.
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Run in Open-Loop and Switch to Closed-Loop
A permanent magnet synchronous motor (PMSM) with a quadrature encoder sensor requires an
initial position to start the motor. As you do not have a method to determine the initial position at the
beginning (before starting the motor), run the motor in open-loop and ensure that the quadrature
encoder index pulse is read at least once. At the quadrature encoder index pulse, the quadrature
encoder sensor resets its position to align with the mechanical angle of the motor. The motor switches
from an open-loop run to closed-loop speed control to maintain the reference speed. This step is only
applicable for a quadrature encoder sensor and not for a Hall position sensor. A Hall sensor outputs
the initial position of the rotor segment from Hall signal port inputs.

Follow these steps to implement an open-loop motor run with a transition to closed-loop control:

1 Copy the mcb_pmsm_foc_qep_f28379d/Current Control/Control_system subsystem to
your model. This adds the logic to run the motor in open-loop. This subsystem switches the
control from open-loop to closed-loop if EnClosedLoop input is 1. Add an input port
EnClosedLoop. This adds the Data Store Read blocks for Enable and SpeedRef. Add the Data
Store Memory blocks Enable, EnClosedLoop, and SpeedRef in the topmost level of the model.

When the open-loop run begins, the sign of SpeedRef decides the direction of the initial motor
run. If SpeedRef is negative, the motor spins in the opposite direction during the open-loop run.

2 Copy the mcb_pmsm_foc_qep_f28379d/Current Control/Input Scaling/Calculate
Position and Speed subsystem to your model. This adds the IndexFinder block. When
quadrature encoder index pulse is detected for the first time, IndexFound port is set to 1. Add
an output port IndexFound and rename it to EnClosedLoop.
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3 Connect the output port EnClosedLoop from the Input Scaling subsystem to the input port
EnClosedLoop in the Control_System subsystem as shown in this figure.

4 Copy the mcb_pmsm_foc_qep_f28379d/Speed Control/Speed_Ref_Selector subsystem
to your model. This block uses the speed_ref block when closed-loop control begins. For a
smooth transition from open-loop to closed-loop, the speed measured is used as the speed
reference during the open-loop run. Add a Data Store Write block SpeedRef to the
PI_Controller_Speed input port.
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5 In the plant model, a step input is added to simulate the IndexFinder block for simulation.
Rename the step input to Switch to closed loop. See the mcb_pmsm_foc_qep_f28379d/
Inverter and Motor - Plant Model/Sensor_Measurments subsystem for the step input
for switching to closed-loop. Select the step time of 0.1 and sample time of Ts_motor.

6 Create Data Store Memory blocks for EnClosedLoop, Enable, and SpeedRef. Enable block is used
to reset the PI integrator before running the motor. Add these default values in the Data Store
Memory blocks: Enable = 1, EnClosedLoop = 0, and SpeedRef = 0.25.

The Data Store Memory blocks are used to share data across the subsystem.
7 Run the simulation and observe the speed reference and the speed feedback.
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Model Configuration and Hardware Deployment
Use these steps to select the target hardware in the model configuration.

1 In the Simulink model, click Hardware > Hardware Settings to open the Configuration
Parameters dialog box.

2 Open the Hardware Implementation tab and set Hardware board to TI Delfino F28379D
LaunchPad.

For any other custom board, navigate to the Hardware Implementation tab of the Configuration
Parameters dialog box and select the appropriate processor and edit the peripheral details in
Hardware board settings > Target hardware resources.

For the solver and quadrature encoder interface configuration details, see “Model Configuration
Parameters”.

Connect the Texas Instruments BOOSTXL-DRV8305 board and QEP connector to the Texas
Instruments LaunchPad XL hardware board. For hardware connection details related to Texas
Instruments C2000 LaunchPadXL, see “Hardware Connections”. The BOOSTXL-DRV8305 (attached
to the LaunchPadXL board) requires an enable signal. This signal is connected to the GPIO124 pin of
the processor.

In the Simulink Library Browser, add Embedded Coder Support Package for Texas Instruments C2000
Processors > F2837xD > Digital Output. In the block parameters dialog box of the Digital Output
block, change these settings:

Parameter in Digital Output Block Settings
GPIO Group GPIO120~GPIO127
GPIO124 on

Rename the block as GPIO_124.

Add a constant block with the value 1 as an input to the GPIO124 block as shown in this figure.

On the Hardware tab of the Simulink model, select Build, Deploy & Start. This generates the C
code, CCS project, and a target-specific out-file. The system uses serial communication to download
this target specific out-file to the target hardware and runs the downloaded algorithm in the
hardware.
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When the model is deployed to the target, the motor runs in open-loop and then runs in closed-loop
speed control. This example recommends that you use serial communication to monitor and debug
the signals. See the example model mcb_pmsm_foc_qep_f28379d for details on implementing serial
receive and transmit communications (between the host and target models). From the Serial Receive
block, update the Data Store Memory block to start and stop the motor.
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Validate System
In this section...
“Calculate Physical Motor Load in Target Hardware” on page 2-23
“Compare Speed Controller Response in Simulation and in Target Hardware” on page 2-24
“Compare Current Controller Response in Simulation and in Target Hardware” on page 2-26

This section explains how to evaluate the accuracy of the plant (motor and inverter) model of the
physical motor and load connected to the motor. You should validate the plant model and verify that
the results are close to the physical system measurements before using the plant model for
implementing advanced algorithms. You can validate the system by comparing the step response of
speed control and current control in simulation and in target hardware connected to the motor.

Use the example “Tune Control Parameter Gains in Hardware and Validate Plant” to measure the step
response of the current and speed controllers. The host model in this example communicates the
current reference to the target hardware and measures the step response of the current controller.

• You can use any speed control example from Motor Control Blockset to validate the system.
• Validate speed control by comparing the step response in simulation and the hardware test values.
• Validate the d-axis current control by electrically or mechanically locking the rotor and comparing

the step response in simulation and the hardware test results.

You can use another method to validate the d-axis current control. Run the motor at a constant
speed and provide a step change in the reference d-axis current. This requires two modifications
in the speed control subsystem of the target model. Set a constant speed reference input.
Command Id reference from the host model. Compare the step response of the d-axis current in
simulation and in the hardware tests.

• Validate the q-axis current control by mechanically coupling the motor with an external
dynamometer running in speed control. This requires two modifications in the speed control
subsystem of the target model. Discard the Id and Iq reference from the speed PI controller output.
Command Id reference from the host model. Compare the step response of the q-axis current in
simulation and in the hardware tests.

Warning When capturing the step response in d-axis current control, always use a positive step.
Negative values of Id can damage the permanent magnet in the PMSM.
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See the example “Tune Control Parameter Gains in Hardware and Validate Plant” to deploy the model
to the hardware. Perform motor parameter estimation because accuracy in the plant model is
important so as to match the simulation results with the hardware measurements.

Calculate Physical Motor Load in Target Hardware
Before comparing the controller responses in simulation and in the target hardware, the load torque
in plant simulation must match the motor load in the physical system. Follow these steps to calculate
the load torque in the physical system and update the calculated load torque in the plant model.
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1 Run the host model and connect the target hardware through serial communication.
2 In Select Motor operating mode, select Speed control.

The motor spins in speed control.
3 Select Id_meas in Monitor Signal #1 and Iq_meas in Monitor signal #2. Read the Id_meas

and Iq_meas values from the scope.
4 Convert the per-unit (PU) current to Amperes by multiplying it with PU_System.I_base.
5 Calculate the load torque in Nm using this equation:

Tload = 1.5 × pole_pair × [(f lux_pm ⋅ Iq) + (Ld− Lq)Id ⋅ Iq]

where,

f lux_pm = Permanment magnet flux linkage (pmsm.Flux_PM)

Ld,  Lq = Inductance in Henry (pmsm.Ld, pmsm.Lq)

Id,  Iq = Current measured in Amperes

Id_meas, the measured Id current (in PU), equals 0.
6 In the mcb_pmsm_operating_mode_f28379d/Motor and Inverter/Plant Model (sim)

sub system, provide the calculated load torque value as an input to the LdTrq port of the PMSM
motor block.

Compare Speed Controller Response in Simulation and in Target
Hardware
In simulation, provide a speed step input and note the speed response. On the target hardware,
command the speed reference step input and observe the speed feedback. Compare the resulting
step response in simulation and in target hardware to determine accuracy of the plant model.

1 Simulate the model mcb_pmsm_operating_mode_f28379d. Plot the reference speed and
measured speed signals. By default, this example provides a step input of 0.2 to 0.5 to the
simulation model.

2 Run the host model to communicate with the target hardware.
3 In Select Motor operating mode, change the mode from Stop to Speed control.
4 In the host model, select Speed_ref in Monitor Signal#1 and Speed_meas in Monitor

Signal#2.
5 Open the scope in the host model.
6 In host model interface, change the speed_ref from 0.2 to 0.5 and observe the step change in

the scope.
7 Compare the step response of the hardware results with the simulation results.

Step Response Analysis for Speed Controller

Compare the step response obtained from simulation with the measurements obtained from the
target hardware. The results may vary depending on the tolerances in the plant model. Generally,
simulation results are close to the values measured on the target hardware.
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 Peak overshoot
(%)

Peak time (ms) Rise time (ms) Settling time
(ms)

Simulation results 20.13% 16.023 5.561 61.027
Hardware results 22 % 14.324 5.041 51.148

Compare Current Controller Response in Simulation and in Target
Hardware
In simulation, provide a step current reference and note the current response. This example needs
some changes to simulate the current reference step input. See these steps for the model changes.
This applies only to simulation. In the target hardware, command the current reference step input
and observe the current feedback. Compare the resulting step response in simulation and in the
target hardware to determine the accuracy of the plant model.

1 For hardware measurements, run the host model.
2 In Select Motor operating mode, change the mode from Stop to Torque control.
3 Select Id_ref in Monitor Signal#1 and Id_meas in Monitor Signal#2 in the host model.
4 Open the scope in the host model.
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5 Change Id_ref from 0.02 to 0.22 and observe the step change in the scope. Ensure that the
motor is not running. The scope displays the step response for the Id_ref input.

6 For simulation, two changes are needed in the simulation model. In the
mcb_pmsm_operating_mode_f28379d/TorqueControl/Control Modes/torque_control
subsystem add a step input for the d-axis current controller. Choose a step input of 0.02 to 0.22
at 1 second. Select Time sample as -1. In the data-type conversion block, select the output
datatype as fixdt(1,32,17).

7 In the PMSM motor block available in the mcb_pmsm_operating_mode_f28379d/Motor and
Inverter/Plant Model (sim) subsystem, change the Mechanical Input Configuration to
Speed and input 0 to the Spd input port.
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8 Run the simulation and measure the Idref_PU and Idmeas_PU values in the simulation Data
Inspector.

9 Compare the step response in the hardware with the simulation results.

Step Response Analysis for d-axis Current Controller

Compare the scope image from simulation with the measurements from the target hardware. The
results may vary depending on the tolerances in the plant model. With an accurate plant model, the
simulation results are closer to the measured results from the target hardware.

2 Deploy and Validate System

2-28



 Peak overshoot
(%)

Peak time (µs) Rise time (µs) Settling time
(µs)

Simulation results 14 % 300 150 500
Hardware results 8.18 % 400 150 800

The accuracy of the plant model improves the accuracy of simulation and matches the test hardware
results.

Tip If the simulation results differ considerably from the hardware measurements, verify the delay
and scaling factor in the plant model.

Note For the q-axis current controller, align the motor to the d-axis and mechanically lock the rotor.
Follow this for the d-axis current controller for comparative analysis. You can achieve external
mechanical locking through the mechanical braking system or by coupling with a dynamometer
motor running in speed control.

 Validate System

2-29





Plant Modeling

• “Creating Plant Model Using Motor Control Blockset” on page 3-2
• “Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3
• “Add Average-Value Inverter Block” on page 3-5
• “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
• “Create Position Sensing Subsystem” on page 3-7
• “Add Delay in Plant Model” on page 3-8
• “Integrate the Blocks and Subsystems” on page 3-9
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Creating Plant Model Using Motor Control Blockset
An accurate plant model is a vital part of control system development using Motor Control Blockset.
After creating an accurate plant model, you can verify the functionality of the control system, conduct
closed-loop model-in-the-loop tests, tune gains using simulation, and optimize the design before you
deploy the model in the actual plant.

When you create a plant model using Motor Control Blockset, you model these components to
simulate functional behavior in a simulation environment:

• Permanent Magnet Synchronous Motor (PMSM)
• Average-value Inverter
• Sensors and signal conditioning circuits
• Processor peripherals: Analog-to-Digital converter (ADC) and Pulse-width-modulator (PWM)

You can verify the functionality of the plant model you create by:

1 Reading the normalized PWM duty cycle from the control algorithm
2 Simulating the motor for the connected load
3 Obtaining the output motor phase current (in terms of ADC counts) and the output motor

position (in terms of encoder pulse counts) from the simulation

The workflow to create a plant model involves these steps.

Note See the plant model in mcb_pmsm_foc_qep_f28379d used in the example “Field-Oriented
Control of PMSM Using Quadrature Encoder”.

1 “Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3
2 “Add Average-Value Inverter Block” on page 3-5
3 “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
4 “Create Position Sensing Subsystem” on page 3-7
5 “Add Delay in Plant Model” on page 3-8
6 “Integrate the Blocks and Subsystems” on page 3-9
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Use PMSM Block and Motor Parameters to Design Plant Model
You can use the surface mount or interior PMSM blocks from Motor Control Blockset in two ways to
create a plant model.

• Estimate motor parameters by using Motor Control Blockset and open a Simulink model with
PMSM motor block (auto-populated with estimated parameters):

The Motor Control Blockset parameter estimation workflow helps you to determine the motor
parameters by performing a series of tests on the motor. For details, see “Estimate Motor
Parameters Using Motor Control Blockset Parameter Estimation Tool”. After successfully
estimating the motor parameters, click Open Model in the parameter estimation host model. A
new model opens with the Interior PMSM block updated with the estimated motor parameters.

• Create a new model and add PMSM motor block manually from the Motor Control Blockset
library:

Create a new Simulink model and add the Surface Mount PMSM block from the Motor Control
Blockset library in the Simulink library browser. Open the block mask and enter the motor
parameters manually. You can obtain these parameters by using:

• The Motor Control Blockset parameter estimation workflow. For details, see “Estimate Motor
Parameters Using Motor Control Blockset Parameter Estimation Tool”.

• The motor datasheet or from other known sources.
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In Surface Mount PMSM block, set the Simulation type parameter to Discrete and the Sample
Time (Ts) parameter to 25e-6 (half of the control frequency). Discrete simulation improves the
simulation speed.

If parameters are available in a MAT-file, click the Browse button on the block mask to locate the
MAT-file and then click Load from file to load the parameters.

The files containing the default motor parameters are available in the location <matlabroot>
\toolbox\autoblks\autoblksshared\mcbtemplates for your reference.

In the Surface Mount PMSM block mask, you can also represent the motor parameters as
workspace variables and use the m-script to automatically update these variables using the model
initialization callback. For reference parameters of some commercially available motors, see the
file mcb_SetPMSMMotorParameter.m. For details about this m-script file, see “Estimate Control
Gains from Motor Parameters”.
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Add Average-Value Inverter Block
In the Simulink model that contains the Surface Mount PMSM block, add an Average-Value Inverter
block from the Motor Control Blockset library. The Average-Value Inverter block reads the normalized
PWM duty-cycle and DC voltage input (in volts) and outputs the phase voltages. Connect the Vabc
output port of the Average-Value Inverter block to the PhaseVolt input port of the Surface Mount
PMSM block.
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Create Motor Phase Current Sensing and Signal Conditioning
Subsystem

In the physical hardware, the motor current read by the current sensors is filtered and scaled to an
ADC measurable range. The ADC peripheral in the processor reads the current signals and outputs
the ADC counts for the current control algorithm. This figure shows an example of how you can model
the motor phase current sensing and signal conditioning algorithms.

The maximum measurable peak current is considered as the base current. The ADC counts can be
calculated from the base current, full-scale ADC values, along with the ADC offset, by using this
equation:

ADC counts = 
Full scale ADC counts 2

Base current (in amperes) + ADC offset

For the default inverter and signal conditioning circuit parameters for commercially available
inverters, see the mcb_SetInverterParameters.m file. To add a new inverter configuration, create
an inverter type in this file and use this in the model initialization script for parameter initialization. If
you are using low-pass filters for measuring the current, add an average model to filter the current.
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Create Position Sensing Subsystem
The position sensing subsystem reads the motor position from the Surface Mount PMSM block and
simulates the QEP encoder pulse counts. The Surface Mount PMSM block outputs the mechanical
position of the motor in rad/s.

Convert the position in the range 0 to 2π rad/s to QEP encoder counts as shown in this figure.

For details about detecting the QEP index position offset with respect to the rotor d-axis, see
“Quadrature Encoder Offset Calibration for PMSM Motor”.
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Add Delay in Plant Model
You can add delays in the plant model to simulate the control algorithm processing delays in the
hardware and the PWM switching delays. The algorithm processing delay in the processor is the time
taken to update the PWM. PWM switching delay is usually half the switching time period.

For adding delays in the discrete time solver with a sample rate of Ts/2 (half the switching time
period), the processor computation delay and PWM switching delay are factored as Z-1 (Ts/2).
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Integrate the Blocks and Subsystems
The final step of designing the plant model using Motor Control Blockset is to integrate the blocks
and subsystems that you created earlier. The completed plant model accepts the normalized PWM
from the controller and outputs the motor phase currents and position.
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Hardware Troubleshooting

• “Check ADC Inputs” on page 4-2
• “Verify PWM Outputs” on page 4-4
• “Check Hardware Connections” on page 4-6
• “Test Algorithm Design” on page 4-7
• “Check Generated Code” on page 4-8

4



Check ADC Inputs

Description
The analog to digital converter (ADC) can measure incorrect values. For example, in custom-designed
analog circuits, currents measured by ADC can be incorrect due to noise, out-of-phase measurements,
or sampling issues. This results in faulty feedback to the control system that leads to instability.

Action
Verify ADC Pin

See the hardware schematics and verify that you identified and configured the correct ADC pins for a
given measurement (a-phase, b-phase).

Verify ADC Block Configuration

Open the ADC block and verify that the Input Channels, ADC module, SOC trigger, SOCx
acquisition window parameters are configured correctly.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with ADC-PWM interrupt synchronization.
This also results in reduced EMI/EMC noise in the sampling because ADC conversion happens outside
the PWM transition. For more information, see “Task Scheduling in Target Hardware” on page 2-6.

Reduce Noise in ADC Sampling

You may notice noise in the ADC samples. This may happen either if there is EMI/EMC or if sampling
is faster than what the device can support. EMI/EMC can be reduced by improving the hardware
design.

To avoid problems due to faster sampling, see the device datasheet and determine the maximum
supported clock frequency of the ADC. For example, if you are using a Texas Instruments
TMS320F28379D series microcontroller, it can support a CPU clock frequency of 200 MHz, but the
maximum clock frequency supported by the ADC module is 50 MHz. Use this value to set ADC clock
prescaler (ADCCLK) parameter on the Hardware Implementation tab in the Configuration
Parameter dialog box of your model.

Check VDD of Current Measurement Device

Many current measurement devices derive VDD from the DC power supply (VDC). In addition, the
device enable pin also determines the supply voltage to the internal current measurement circuit (for
example, Texas Instruments BOOSTXL-DRV8305). Absence of VDD (or the device enable pin) results
in 0 V at the ADC of the target hardware. Ensure that these conditions are not present in your
hardware.

Check ADC Current Conventions

Check if you are using the correct conventions for ADC current sensing. Motor Control Blockset
considers the current entering the motor (or leaving the inverter) as positive. This convention
changes with the hardware because of the differences in the inverting or non-inverting op-amp and
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the analog current sensing circuit. Check the inverter current sensing circuit op-amp and set the
inverter.invertingAmp variable (control parameter) to:

• 1 — If the current sensing circuit uses a non-inverting op-amp.
• –1 — If the current sensing circuit uses an inverting op-amp.

For more information about setting a control parameter, see “Estimate Control Gains from Motor
Parameters”.

Test Readability of Unipolar and Bipolar Signals

Check if the measurement circuit is designed to read unipolar and bipolar signals.

Check if the inverter.ISenseVoltPerAmp variable (control parameter) is set correctly according
to the hardware specification. For more information about this parameter, see “Estimate Control
Gains from Motor Parameters”.

DC signal measurement circuits are usually unipolar. For example, BoostXL-DRV8305 has a DC
voltage measurement circuit that converts the voltage range of 0 – 44.3 V to 0 – 3.3 V at the ADC.
Voltage ADCs cannot measure negative voltages.

AC signal measurement circuits are usually bipolar. For example, BoostXL-DRV8305 has an AC
current measurement circuit that converts the current range of –23.57 to +23.57 A to 0 – 3.3 V at the
ADC with an offset of 1.65V.

Check ADC Offset and Gain computation

Verify the ADC offset values before deploying and executing the code on the target hardware. For
more information, see “Current Sensor ADC Offset and Position Sensor Calibration”.

Check the accuracy of the computed gain for conversion of the ADC counts to signal value in the real
world as described in the previous section.

Check ADC Resolution

Check the ADC resolution to determine the minimum value of the signal that it can measure. For
example, a 3.3 V 12-Bit ADC that can measure ±16.5 A has a resolution of 0.1 Volts/Ampere. The
minimum current that the ADC can measure (excluding EMI/EMC and noise) is approximately 8 mA.

Determine the minimum measurable current by the ADC. Verify that this current is greater than the
ADC signal-to-noise ratio, tolerance, and errors. Ensure that you simulate and check the model before
deploying it to the target hardware.

Low ADC resolution can result in difficulties when implementing sensorless algorithms to control
motors that consume very small currents (for example, 50 mA AC) on no load. In addition, EMI/EMC
and noise affects ADC measurements. It is a good practice to simulate the model and verify if the
ADC resolution is appropriate. Increase the gain of the sensor amplifier on the hardware to increase
the ADC resolution.
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Verify PWM Outputs

Description
The motor control algorithm generates the pulse width modulation (PWM) signals to control the
motor through inverter. In some cases, the PWM signals can be incorrect due to improper switching
frequency, wrong interrupt and PWM generation configurations, or error in the duty cycles. Incorrect
PWM signals result in improper switching of the inverter.

Action
Verify PWM Frequency

Use an oscilloscope to verify that the generated PWM signals has the expected switching frequency.
In embedded targets, configuration of the PWM module depends on factors such as target hardware
and clock frequency. For example, you can use these equations to calculate PWM_Counter_Period for
Texas Instruments C2000 targets that have the ePWM module configured to work with the Up-Down
counting mode:

CPU_frequency (Hz) = 200e6

PWM_frequency (Hz) = 20e3

PWM_Counter_Period (PWM timer counts) = CPU_frequency/ PWM_frequency/ 2

Verify PWM Generation

Ensure that you feed a correct PWM duty cycle to the switching device (for example, MOSFET or
IGBT). PWM generation depends on these active-high and active-low configurations:

• Active high — 25% duty results in 25% on-time for upper leg MOSFET or IGBT (recommended).
• Active low — 25% duty results in 75% on-time for upper leg MOSFET or IGBT.

In addition, check if there is any inversion of the PWM signal between the target and MOSFET due to
the gate driver or isolator circuit (25% gate pulse must be 25% on-time by the driver chip).

Verify Interrupt Configuration

Majority of the controller algorithms are designed to work with the ADC-PWM synchronization for
advantages like current sensing, reduced EMI/EMC interference.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with the ADC-PWM interrupt
synchronization. This also results in reduced EMI/EMC noise in the sampling because ADC
conversion happens outside the PWM transition. For more information, see “Task Scheduling in
Target Hardware” on page 2-6.

Verify Updates to PWM Duty

Verify if the PWM duty is updated or refreshed in synchronization with the PWM module. To
implement a robust control, it is a good practice to timely refresh the PWM duty (for example, once in
Tpwm, preferably before Tpwm/ 2).
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Check Behavior at PWM Generation Limits

Check the datasheet of the PWM driver circuit for support at the 0% duty and 100% duty limits. For
functional safety, it is a good practice to limit the maximum duty cycle somewhere between 95 and
98% by setting the corresponding value in the DQ Limiter block.

Check for Incorrect PWM Generation Configuration

Verify that the hardware uses the correct PWM generation configuration. For example, BoostXL-
DRV8305 supports 3-PWM mode, 6-PWM mode, and 1-PWM mode.

Check for Default Dead Bands

Check if there are dead bands introduced by the motor driver board. Consider this while generating
dead bands from the PWM module.

Confirm Maximum Switching Frequency

Determine the maximum possible switching frequency for the inverter and driver from the device
datasheets. Ensure that the model does not exceed this value.
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Check Hardware Connections

Description
When you try to run the motor, you may face problems due to incorrect hardware connections. This
may result in rise in temperature of the motor, inverter, hardware board or an abnormal behavior
such as uncontrolled motor speed.

Action
Verify Hardware Connections

Check the wiring and connections before getting started. For details, see “Hardware Connections”.

Manually Check Rotation of Shaft

Verify that the shaft of your motor is rotating freely with minimal rotational friction. A mechanical
failure in the bearings may result in thermal overloads, which can damage the motor windings.

Verify Rated Currents for Motor and Inverter

Determine the rated currents of the motor and inverter from the manufacturer datasheet. Ensure that
you do not overload the motor for durations longer than what the original equipment manufacturer
(OEM) has specified.

Check Motor and Inverter Temperature

Ensure that the temperature of the motor windings and inverter heat sink are within the expected
temperature range. Overloading the hardware results in excessive heat that can damage the
hardware.

Verify Measurements from Analog Circuits

Verify the range of the signals that you measure from the analog circuits (for example, the maximum
current of the inverter).

Check for Additional Resistors

After you complete the process of estimating the motor parameters, you should not change the motor
connections because this leads to differences in the contact and cable resistances. In addition, verify
that the initialization script of the model takes into consideration any additional resistors present in
the power circuit.

Verify Fault Pin and Enable Pin Connections

Check and verify that the fault pins and enable pins are connected correctly on the target hardware
board.
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Test Algorithm Design

Description
When simulating or running a model on the target hardware, you can face problems because of
defects in the implementation of the control algorithm. This can lead to an uncontrolled motor speed,
differences in the current waveforms or mismatch in PI controller gains between simulation and
target hardware.

Action
Verify Parameters and Other Input Data

Verify that you identified and entered the inputs (for example, motor and inverter parameters, clock
speed, and switching frequency) correctly. If the input data is incorrect, the motor control algorithm
will not work. Use the Motor Control Blockset parameter estimation tool to compute the motor
parameters. For more details, see “Estimate Motor Parameters Using Motor Control Blockset
Parameter Estimation Tool”.

Verify Waveforms of Measured Currents

After you load the motor shaft, verify that the waveforms for the measured signals match the shape
visible in the simulations. For example, field-oriented control ensures perfect sinusoidal waveforms
for currents. For exceptions, see “Check ADC Inputs” on page 4-2.

Verify Control System Design

Verify that all the controllers used in the model (for example, PI controllers and sliding mode
observer) are designed correctly.

You can start by simulating the model by using the estimated motor parameters before deploying the
model to the target hardware. Observe and verify the step responses for the current and speed by
using both simulation and deployment on the target hardware.

Model-Based Design ensures that correct simulation of the model results in identical outcomes on the
target hardware with identical gains (that match the gain values computed during simulation) for all
the controllers.

Verify Signal Representation

Check if you can represent the signals correctly for a selected data type. For example, it is not
possible to store the value 1024 in the 8-bit data-type. Similarly, it may not be possible to represent
some gain values in the selected fixed-point resolution.

Verify Base Values for PU Representation

If you are working with the Per-Unit system, please check that the base value of a quantity (for
example, base current), is selected correctly. For more details, see “Per-Unit System”.
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Check Generated Code

Description
When simulating or running a model on the target hardware, you may face problems due to errors in
the software architecture of a model. These errors can affect the performance of control algorithm
and increase the code execution time on the hardware.

Action
Check Sample Times

Verify the base rates and other execution rates of the model by using Debug > Information
Overlays > Sample Time > Colors. The different sample times of the model decide the execution of
different tasks in the simulation and in the generated code.

Check for Overruns

Verify that there are no overruns beyond the available sample time. Algorithms with overruns affect
the control system stability. If required, optimize the model for code execution. For more details, see
“Code Verification and Profiling Using PIL Testing” on page 1-17.

Verify Low-Priority Interrupt Service Routines (ISR)

Verify that the low-priority interrupt service routines (ISR) (for example, speed control loop and
communication service routines) are executed according to the design and are not ignored by any
overruns in the high-priority ISRs.

Check Execution Order Priority

Check that the model uses a correct execution order priority. Verify that all the interrupts are
configured correctly.

Verify Software Initialization

To allow the analog circuits to get ready, check that the software initialization delay (for example,
ADC blanking time, PWM driver, and charge pump) is greater than the required value specified by the
manufacturer (for example, 2µs).

Check Hardware Initialization

Verify that you initialized the target hardware and inverter correctly. Generally, the driver is disabled,
which brings all the switches to a high impedance state and initializes the important variables to the
default values.

Verify Third-Party Tool Version

Verify that you are using the recommended versions of the third-party tools. Check that bugs in the
third-party software do not cause regressions.
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